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Abstract. In this paper we propose, in a methodological manner, four dif-
ferent applications of Wavelet transforms in the Side-channel context. The
proposed applications are involved in several Side-channel analysis aspects:
acquisition of traces, patterns detection, noise filtering and secret-key recov-
ery.
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1 Introduction

Recently, a new kind of threats called Side-Channel Analyses (SCA) have attracted
much attention in embedded security areas. These analyses are serious concerns as
they are able to retrieve the secret information from the cryptographic implemen-
tations without tampering with the system. Therefore, the need of securing and
evaluating the robustness of embedded systems against such malicious attacks be-
comes obvious. From the security evaluation point of view, it is important to get
rid off all possible external issues like the access to the device, which are not re-
lated to the cryptographic process itself, so as to make the evaluation in the best
conditions. Moreover, it is better to know whether the deployed countermeasures
can be broken by an attacker. Today’s evaluator already has at his disposal several
tools to properly analyse Side-channel traces. However, in the SCA literature, the
analysis is usually performed either in the time or the frequency domain. Indeed,
it is often reported that analysing a power or electromagnetic signal in the time
domain is more efficient than analysing it for its frequency content, based on the
Fourier transform. Nonetheless, a Fourier analysis turns out to be useful especially
if the signals acquired are misaligned. The Fourier transform is only able to retrieve
the global frequency content of a signal, thus the time information is lost. This is
overcome by the short time Fourier transform (STFT) which computes the Fourier
transform of a windowed part and shifts the window over the signal. The STFT
gives the time-frequency content of a signal with a constant frequency and time
resolution due to the fixed window length. This is unlikely the most appropriate
resolution. For low frequencies, often a good frequency resolution is required over
a good time resolution. Whereas, for high frequencies, the time resolution is more
important. An alternative tool with some attractive properties is the Wavelet trans-
form. Although Wavelet theory has been successfully applied in many applications
in science and engineering, it has been rarely invoked in the SCA context. Actually,
Wavelets have only been used in two occasions: first they are used to remove noise
from Side-channel traces (which is already known) [1], and second used to estimate
the probability density function of the leaked information [2]. In this paper, we
propose new ways to allow the evaluator to get benefits from the multi-resolution



provided by Wavelet analysis. First, we show how Wavelets can be properly used
to make real-time compression of Side-channel traces without loss of information.
Indeed, it is known that, when acquiring Side-channel signals, cryptographic pat-
terns need a high sampling rate to be detected by the existing means, especially
when the implementation is protected. Therefore, a large memory depth and stor-
age are required. Obviously, the goal of compressing SCA traces is to minimize the
storage capacity needed to hold or to convey, without loss, the sensitive informa-
tion. Second, we propose an improvement of the basic method of Pelletier et .al,
proposed in [1] and used for Side-channel traces noise filtering. Indeed, we discuss
the problem of noise filtering from the SCA context and propose to employ an in-
formation theoretic approach as a complementary tool and an enhancement for the
basic method. Third, we highlight the ability of Wavelets to detect and extract the
patterns of a cryptographic process when performing a simple Side-channel analysis
(i.e., a direct interpretation of the traces acquired). Eventually, we show that SCAs
when performed with a multi-resolution analysis are much better, in term of security
metrics, than considering only the time or the frequency resolution. Actually, the
gain in number of traces needed to recover the secret key is about 50%, relatively
to an ordinary attack. For this purpose, two attacks are considered: Correlation
Power Analysis (CPA) and Principal Components Analysis (PCA) based template
attacks, both performed on real acquired Side-channel traces. Besides, we note that
such analysis is generic as it can be seen as a plug-in used to improve existing Side-
channel attacks. The overall goal of this talk is about valuing, in a methodological
manner, the use of Wavelet transforms in Side-channel Analysis — not only in the
noise filtering preprocessing, but in the very core of the attack.

...

cos(2πµnt) sin(2πµnt) x(t)

µn

µ1

ej2πµt

Time

F
re

qu
en

cy

cos(2πµnt) sin(2πµnt)

Fig. 1. Fourier transform illustration.

2 An understanding of the multiresolution analysis

In practice, signals acquired are usually analysed in the time domain. The infor-
mation encompassed by the signals can be translated into different representations.
Actually, thanks to these representations, more details about the signal, such as
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Fig. 2. Wavelet transform illustration.

the frequency contents, can be emphasized very nicely in order to highlight the
hidden dynamics related to the cryptographic process. The most commonly used
representation used to analyse a time signal for its frequency contents is the Fourier
transform and its alternative the Short Time Fourier Transform (STFT). Under-
standing the Fourier transform and the STFT is necessary to understand the basics
of the multiresolution analysis, which is often known as the Wavelet transform.

2.1 Fourier transform

The Fourier transform is a mathematical representation that decomposes a function
exactly into many components, each of which has a precise frequency. From the
mathematical point of view, any periodic function f(t), with period 2p, that is
f(t) = f(t + 2p) = ... = f(t + 2np) for n = 1, 2, 3, ..., can be expressed as a linear
combination of all cosine and sine functions, which have the same period:

f(t) =
1

2
a0 +

+∞
∑

n=1

(ancos(
nπt

p
) + bnsin(

nπt

p
)). (1)

Where
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1

p

∫ p

−p
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p
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1

p

∫ p
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. (3)

These series of sines and cosines are called Fourier series. Note that each individual
term cos(

nπt
p

) or sin(
nπt
p

) is a periodic function, which period Tn is determined by
the relation that when t is increased by Tn, the function returns to its previous
value,
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+

nπTn

p
) = cos(

nπt

p
). (4)



Thus,
nπ

p
Tn = 2π , Tn =

2p

n
. (5)

The frequency µ is defined as the number of oscillations in one second. Therefore,
each of them is associated with a frequency µn,

µn =
1

Tn

=
n

2p
. (6)

Often, the angular frequency, defined as ωn = nπ
p

= 2πµn, is used to simplify the
writing. The Fourier series can be generalized to complex numbers and further
generalized to derive the Fourier transform. Actually, it can be shown that the
Fourier series of a function repeating itself in the interval of 2p can be written as:

f(t) =

+∞
∑

n=−∞

cnei nπ
p

t , cn =
1

2p

∫ p

−p

f(t)e−i nπ
p

tdt. (7)

hence
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+∞
∑
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[
1

2p

∫ p

−p

f(t)e−i nπ
p

tdt]ei nπ
p

t. (8)

Now, if we denote δω = ωn+1 − ωn = π
p
, hence the series can be expressed as:

f(t) =

+∞
∑

n=−∞

[
1

2π

∫ p

−p

f(t)e−iωntdt]eiωntδω =

+∞
∑

n=−∞

1

2π
f̂p(ωn)eiωntδω. (9)

where f̂p(ωn) =
∫ p

−p
f(t)e−iωntdt.

The Fourier transform may be regarded as the formal limit of the Fourier Series
as the period tends to infinity. Indeed, if we let p → +∞, then δω → 0 and ωn

becomes a continuous variable. Hence, we have:

f̂(ω) = lim
p→+∞

f̂p(ωn) =

∫ +∞

−∞

f(t)e−iωtdt. (10)

Besides, The original signal f(t) can be reconstructed using the inverse Fourier
transform as follows:

f(t) =
1

2π

∫ +∞

−∞

f̂(ω)eiωtdt. (11)

In practice, signals acquired experimentally are not continuous in time, but sampled
as discrete time intervals δT . Besides, T-boner length is finite with a total acquisi-
tion time T , divided into N = T

δT
intervals. In this case, the frequency analysis is

conducted by using the Discrete Fourier Transform (DFT). Generally, the Fourier
transform is useful at providing the frequency content that can not be easily de-
tected in the time domain. However, the temporal structure of the analysed signal is
not revealed; and therefore such transforms are not suitable for brief signals, signals
that change suddenly (short bursts), or in fact any non-stationary signals. Actually,
using Fourier transform does not reveal how the signal’s frequency contents vary
with time. This may limit the merit of Fourier transform specially when both time
and frequency information are required.

2.2 Short Fourier Transform (STFT)

In order to overcome the limitations of the Fourier transform, one can introduce an
analysis window of a certain length that shifts along the signal’s time axis to perform
a time-localized Fourier transform. This concept, which has been initially proposed



by D.Gabor in [3], is referred to as Short Time Fourier Transform (STFT). The
STFT is capable to retrieve both frequency and time information from a signal.
Technically, STFT employs a sliding window function g(t) that is centered at time
τ ; and can be expressed by the following equation:

fSTFT (τ, µ) =

∫ +∞

−∞

f(t)g∗(t − τ)e−i2πµtdt. (12)

Where ∗ denotes the complex conjugated operator. When the window is moved
by τ , a time-localized Fourier transform is performed on the original signal f(t)
within the window. This way, the STFT decomposes a time domain signal into a
two dimensions time-frequency representation. The mapping of the time domain
onto a function of time and frequency provides some information about if a certain
frequency is continuously present throughout the time observation or only at a
specific time interval. However, using a sliding window with fixed length results in
a new problem. Actually, the STFT analysis is critically dependent on the chosen
window g(t). Theoretically, it is not possible to know exactly what frequencies occur
at what time, only a range of frequencies can be detected. In other words, it is
not possible to get both a good time resolution and a good frequency resolution
with STFT. In fact, on the one hand, a short window, which is suitable for high
frequencies detection, provides a good time resolution, but several frequencies are
not revealed. On the other hand, a long window, which is suitable for low frequencies
detection, provides an inferior time resolution, but a better frequency resolution.

2.3 Wavelet transform

We have seen that the STFT is not sufficient to describe, with accuracy, both the
time and the frequency content of a signal acquired. Recently, a powerful tool called
Wavelets analysis, has been introduced to overcome the limitation of the STFT. In
contrast to STFT, where the sliding window size is fixed, the Wavelet transform
enables variable window sizes (or resolutions) in analysing the frequency content
of a signal. The Wavelet analysis correlates the original signal f(t) with a set of
template functions obtained from the scaling (i.e. dilation and contraction) and the
shift (i.e. translation along the time axis) of a wavelet function Ψ , referred to as
the mother wavelet. In comparison with Fourier transform, Wavelet transform offers
more flexibility as the analysing function can be chosen with more freedom, without
the need of using sines and cosines forms. The similarity between the original func-
tion and the wavelet function is calculated separately for different time intervals,
producing a two dimensional representation.

Basically, when dealing with Wavelet analysis, two types of transforms can be
used: the continuous Wavelet transform and the discrete Wavelet transform.

Continuous Wavelet transform (CWT) The continuous Wavelet transform
(CWT) is the sum over all time of scaled and shifted versions of the wavelet function
Ψ . The CWT, when applied on the original signal f(t), is expressed as:

CWTf (τ, s) =
1

√

|s|

∫ +∞

−∞

f(t)Ψ∗(
t − τ

s
)dt. (13)

The calculation of the CWT over a signal results in many coefficients, which are
functions of the translation parameter τ and the scale parameter s. In fact, τ , is
proportional to time information. It specifies the location of the wavelet in time;
by varying τ the wavelet can be shifted over the signal. The scale s is inversely
proportional to the frequency information. The variation of s modifies not only the
central frequency of the wavelet, but also the window length. Large scales are related



to low frequencies, giving global information of the signal. Whereas, small scales
correspond to high frequencies, revealing the finer details of the signal. Moreover, the
signal energy remains constant at every scale as it is normalized by 1√

|s|
. Although

the high accuracy provided by the CWT in analysing a signal, the computation of
CWT is redundant and very time consuming. Usually the calculation of the CWT is
performed by taking discrete values for the scaling parameter s and the translation
parameter τ .

Discrete Wavelet transform (DWT) In practice, signals acquired experimen-
tally are not continuous in time, but sampled as discrete time intervals. Previously,
we have seen that the CWT performs a time-frequency resolution (or multiresolu-
tion) by scaling (contraction and dilation) and shifting a wavelet function. Recently,
it has been shown that such analysis can actually be performed using multiresolu-
tion filter banks and wavelet functions, resulting in the Discrete Wavelet Transform
(DWT). We note that the DWT is not the discretized version of the CWT, which
just uses a discretized version of the scale and the translation parameters. The
DWT Provides the information necessary to reliably analyse the content of a signal
acquired; and more importantly it is much faster than CWT calculations. One level
DWT is basically composed of what we call wavelet filters, which involve two basic
concepts: the filter banks and the down- and up-sampling operations. The filter
banks aim at changing the resolution by separating a signal into frequency bands.
Actually, a discrete time signal is first filtered by the filters L and H which separate
the frequency content of the analyzed signal in frequency bands of equal length.
The filters L and H are thus respectively a low-pass and a high-pass filter. When
the signal is put through the high-pass filter, then the high frequency information
is kept and the low frequency information is lost. Whereas, if it is put through the
low-pass filter, then the low frequency information is kept and the high frequency
information is lost. Therefore, the signal is effectively decomposed into two sub-
signals called the details (or detail wavelet coefficients) and the approximations (or
approximation wavelet coefficients), respectively. The approximations correspond
to low frequencies and the details to high frequencies. Note that the output sub-
signals each contains half the frequency content, but an equal amount of samples as
the original signal. In other words, the two sub-signals together contain the same
frequency content as the original signal, however the amount of data is doubled. At
this point, a down-sampling of factor two is applied to each sub-signal, which indeed
doubles the scale (i.e. make the analysing window larger), doubles the frequency
resolution; and therefore avoid redundancy. This way, the resolution and the scale
have been changed in a manner to increase the frequency resolution and reduce
the time resolution. In the second level of DWT, the approximation sub-signal is
used as the original signal and put through a wavelet filter (i.e. filter bank plus
down-sampling), until reaching the required level of decomposition. For a p−level
decomposition, the range of frequency content included by the approximations and
the details, denoted by fApprox and fDet respectively, can be determined as follows:

fApprox = [0,
fs

2p+1
] , fDet = [

fs

2p+1
,
fs

2p
]. (14)

Where, fs is the sampling frequency of the original signal. Eventually, the original
signal can be represented by the final approximation, related to the last level of
decomposition, and the accumulated details corresponding to all levels. The pro-
cess can be expanded to an arbitrary level, depending on the desired resolution. An
illustration of a 3-levels DWT is shown in Fig. 3. Note that the relation between
CWT and DWT is similar. In fact, the wavelets in the CWT act as a band-pass
filter in the convolution of the wavelet function with the original signal; and so does
the DWT sequence of low-pass filter, high-pass filter and down-sampling. Now, for



the reconstruction of the original signal, the same mechanism is used for the trans-
formation. Actually, the reconstruction is possible thanks to the final approximation
and the accumulated details. The obtained sub-signals are first upsampled and then
passed through filter banks, which are related to the initial filter banks L and H.

L H↓ 2 ↓ 2

L H↓ 2 ↓ 2

L H↓ 2 ↓ 2

App 1 Det 1

Det 1Det 2App 3 Det 3

App 2 Det 2

Fig. 3. An illustration of 3-levels DWT decomposition.

3 Applications to SCA

3.1 Wavelets for cryptographic pattern detection

In the Side-channel domain, the main challenge of the evaluator is to best analyse
and exploit dependencies between the manipulated data and the electric (power,
electromagnetic . . . ) consumption leaked from a CMOS circuit. In practice, the
evaluator analyses a set of Side-channel consumption signals (or traces). Each trace
includes a block of operations occurring during a cryptographic process (i.e. en-
cryption or decryption). In real life applications, encrypted data bits are divided
into small blocks of bits, called blocks of operations, depending on the specification
of the cryptographic algorithm. For instance, Block ciphers, like the Advanced En-
cryption Standard (AES), are related to different modes of operations (e.g. ECB,
CBC, CFB, OFB) that aim at dividing the encrypted data and managing the way
of operation of the obtained blocks. Moreover, in the context of SCA, the alignment
of traces is of great concern since deployed analysis are very sensitive to the magni-
tude of acquired traces. Consequently, in order to build a proper set of traces, the
evaluator should be able to detect the start and the end of each block of operation.
Unfortunately, in practice, it is almost impossible to perfectly collect aligned traces
due to many factors. A frequent situation is that the trigger signal, which is pre-
cisely synchronized with the cryptographic process and used in functional testing
or academic cases, is removed by the designer for security reasons. Additionally,
the acquired traces are very often disturbed by the presence of noise. In such sit-
uation, we propose to use the CWT to reveal the global information involved by
the cryptographic process. For this purpose, we recorded one signal involving the
activity of three AES-128bit encryptions in CBC mode. Our measurement setup
consists of one Xilinx Virtex 5 FPGA soldered on a XILINX LX30 platform, an
54855 Infiniium Agilent oscilloscope with a bandwidth of 6 GHz and a maximal
sample rate of 40 GSa/s, antennas of the HZ–15 kit from Rohde & Schwarz. Fig. 4
is a capture generated from MATLAB (wavemenu toolbox ), the powerful numerical
computing environment. The top of this figure shows the original signal as it is



acquired by the oscilloscope. Clearly, the signal is disturbed by a high amount of
noise and no information about the cryptographic process can be revealed. At the
center of the figure, we can see the two dimensional representation of the CWT.
Obviously, thanks to this representation, we can easily detect the limits of the three
measured AES blocks. Actually, we have added the dashed lines to highlight these
limits. We note that these limits are detected for high scales (low frequencies) of
CWT. Moreover, we can reveal more details about the information content of the
signal, such as the number of rounds composing each block of AES. This may be
very helpful for the evaluator, specially when the analysed algorithm is unknown.
Besides, as shown at the bottom of the figure, the MATLAB tool generates an
approximate shape (i.e. extracting the global information) of the analysed signal
based on the CWT coefficients.

Fig. 4. An illustration of the CWT on three AES encryption blocks.

3.2 Wavelets combined Mutual information for Side-channel traces
denoising

Side-channel traces noise filtering using wavelets In SCA litterature, the
procedure of denoising Side-channel traces, using Wavelets transforms, was first
proposed in [1]. The authors in [1], proposed the very general method to remove
noise from signals as it is described in signal processing books, without detailed ex-
planations. The method is based on the Discrete Wavelet Transform. Actually, we
have seen that when a signal is decomposed using the DWT, we are left with a set of
wavelet coefficients that correlates to the high frequency sub-bands, which consist
of the details in the analysed signal. If the details coefficients are small enough, they



might be omitted without substantially affecting the main features of the signal.
Moreover, these small details are often those associated with noise; thus, by set-
ting these coefficients to zero, we are essentially removing the noise. This becomes
the main idea behind thresholding all frequencies that are less than a particular
threshold to zero and use these coefficients in an inverse Wavelet transformation to
reconstruct the denoised version of the original signal. The Threshold value is esti-
mated using the universal formula of Donoho [4]. The Donoho’s threshold, λDonoho,
can be computed as follows:

λDonoho = σ
√

2log(len) , σ =
median|details|

0.6745
(15)

{

Thhard(c)
= c if |c| > λDonoho

= 0 if c ≤ λDonoho
(16)

Where σ and len are respectively the noise variance and the length of the details
coefficients. This threshold is applied only on the details coefficient for a specific
wavelet scale level. In fact, a new threshold is computed for each scale and used in
a thresholding function. There is two basic types of thresholding functions: A hard
thresholding Thhard, defined in Eqn. (16), that sets to zero all details coefficients
that are below the threshold value λDonoho; and a soft thresholding Thsoft, defined
in Eqn. (17), for which the details coefficients with magnitudes smaller than λDonoho

are set to zero, but the retained coefficients are also shrunk towards zero by the
amount of the threshold value in order to decrease the effect of noise assumed to
corrupt all the wavelet coefficients.

{

Thsoft(c)
= sign(|c| − λDonoho) if |c| > λDonoho

= 0 if c ≤ λDonoho
(17)

Improvement of the noise filtering basic method In the open literature of
wavelet analysis, many scientific papers deal with the efficiency of Donoho’s thresh-
old to treat digitally acquired signals. However, we assume that such thresholding
techniques are very generic and not sufficient to treat the problem of noise reduc-
tion from the SCA context. Actually, from the security evaluation perspective, the
evaluator usually knows the value of the secret key. His goal is to make his analysis
in the best conditions; and thus to know at which point a secure implementation
can be resistant to Side-channel attacks. Therefore, the knowledge of the secret key
can be a crucial advantage to the security evaluation analysis. In this context, we
propose to use the powerful information theoretic approach as a complementary
tool to Donoho’s threshold. This information theoretic approach is basically used
to measure the amount of the useful information, which is leaked from the crypto-
graphic implementation. Technically speaking, this metric is mainly based on the
mutual information theory. In the context of SCA, we evaluate the amount of infor-
mation in the Side-channel leakages with the mutual information, measured in bits,
between the global observation O (i.e. the set of traces acquired) and the leakage
L when the secret-key is known, as:

MI(O;L) =
∑

o

∑

l

P (o, l)log
P (o, l)

P (o)P (l)
(18)

MI(O;L) = H(O) − H(O|L) (19)

Where H(O) is an estimation of the entropy of O, p(o, l) is the joint probability
density function of O and L, p(o) is the marginal probability density function of O

and H(O|L) is the conditional entropy of O knowing L. MI(O;L) can be regarded as
a positive (i.e. MI(O;L) ≥ O) and symmetric (i.e. MI(O;L) = MI(L;O)) measure



of the strength of a 2-way interaction between two variables: the observation O and
the leakage L that is related to the secret key. But more importantly, the higher the
value of the mutual information is, the higher the dependency between O and L is.
Statistically speaking, MI(O;L) = 0 if and only if O and L are independent random
variables. Therefore, such tool allows the evaluator to detect the time instants that
are directly related to the secret key, during the cryptographic process. This has
a pure practical flavour for the analysis, as the evaluator will be able to improve
the basic threshold of Donoho. In fact, the mutual information can be used as a
complementary tool to Donoho’s threshold in order to add more information about
the real features of traces acquired; and therefore to improve the reliability and the
accuracy of the thresholding. Our proposed mutual information based Donoho’s
threshold, can be stated in four steps as follows:

– step 1 Applies the DWT over all traces acquired for a desired level of decom-
position.

– step 2 Computes the MI over the set of DWT coefficients obtained.
– step 3 Keeps in memory (table T ) the temporal indexes of all coefficients which

values are located below a certain threshold. (i.g. 90% of Max(MI)).
– step 4 Pre-processes the original traces as follows: For each trace, the DWT

is first computed (with the same level of decomposition as used previously).
Second, λDonoho is calculated based on the obtained DWT coefficients. Finally,
for each coefficient c that value is above λDonoho and that index belongs to
the table T , then the value of c is set to zero.

Clearly, the new algorithm aims at discarding more coefficients that are really re-
lated to noisy time samples; and therefore favorising only the actual coefficients
that are related to the sensitive information. Basically, the Donoho’s threshold is
computed over the details; nonetheless it is noteworthy that in the open litterature
of wavelet analysis other thresholds have been proposed to deal with both the ap-
proximation and the details [5]. We note that our proposed algorithm is generic and
can be plugged to any proposed threshold. An illustration of MI computation is
shown in Fig. 5. The MI is computed over the first-level DWT decomposition of
an unprotected DES implementation (500 traces used and only the first two rounds
were considered). We remark that for an unprotected implementation, the sensi-
tive information is mainly located within the approximations which are related to
the low frequencies. However, during our experiments, we have noticed that, for
some unprotected implementations, sensitive information can not be negligible in
the details’ region. A logical result from thresholding is the compression of signals.
Indeed, the evaluator is required to collect as much traces as he can in order to know
whether the cryptographic implementation can be broken by an attacker. In prac-
tice, the acquisition of SCA traces, which is usually performed by an oscilloscope,
requires a high storage capacity especially when countermeasures are implemented.
In fact, the evaluator is required to evaluate the amount of information leaked from
the cryptographic process. Hence, for each measurement, the whole cryptographic
operations should be included, which requires a high storage capacity when taking
into account all traces acquired. Moreover, a high sampling rate is usually used
when acquiring traces; thus more memory resources are needed. In this context, the
compression of signals that involve a big amount of information, has been recently
the focus of extensive research. One of the most efficient solutions is to use the Dis-
crete Wavelet Transform. The idea behind compression is to remove redundancies
from the signal and keep only the useful information, in a real time manner (i.e.
before storage). From the SCA perspective, the useful information can be defined
as the power or electromagnetic consumption related directly to the activity of the
cryptographic process, resulting in the recovery of the secret key. In the litterature,
Wavelet transforms based signals compression is basically performed using the no-
tion of threshold, detailed previously. We note that the threshold λMIDonoho

, that



Fig. 5. Computation of the MI on the first-level DWT of unprotected DES traces.

we have proposed for the denoising context, can not be applied here. Indeed, the
λMIDonoho

’s threshold needs the entire set of traces acquired to be computed, unlike
the λDonoho’s threshold that is computed for each trace acquired. Several metrics
such as the zero ratio and the retained energy ratio [5], have been proposed in the
litterature, to assess the compression quality. However, when dealing with signals
compression, the thresholding usually requires additional coding techniques like the
Huffman coding, which slow down the compression process. From the SCA perspec-
tive, and specifically for unprotected implementations, we propose to keep only the
approximation coefficients and reject the details. This way, the compression process
is fast and the storage capacity gain is fixed. As experiments, we have measured the
mutual information, in the same way as done for generating the Fig. 5, for differ-
ent implementations (Data Encryption Standard (DES) and AES) and for different
levels of DWT decomposition. As a result, we have realized that the sensitive infor-
mation, within SCA traces, is basically represented by low frequencies. Therefore,
the compression of traces, when taking into account only the approximations, is
performed without loss of information. Indeed, in the litterature of multiresolution
analysis, it has been often reported that a loss of information could happen only
when reconstructing the signal. For this purpose, the so-called bi-orthogonal wavelet
family is often recommended for the reconstruction.

3.3 Wavelets for secret key recovery

In SCA, the interest is to find some ways to accelerate the attack, taking into
account that the scarce resource is the number of traces acquired. As stated before,
the importance of wavelets relies on separating the different sources (i.e. an electrical
activity with different frequencies content) composing the signal acquired. We recall
that the signal content can be represented differently thanks to the concatenation
of the approximations of the last level of decomposition with the details. From
the SCA perspective, such representation is very helpful as the main goal of SCA
is to separate and extract the sources related to the cryptographic process and
responsible for the manipulation of the secret key. Our proposition is to perform
the Side-channel analysis directly on the wavelet coefficients: the approximations



and the details. In other words, the leakage is not anymore represented by the time
samples of the acquired signals but simply by the value of the wavelet coefficients.
This way, in one sense, we may improve the efficiency of Side-channel distinguishers.
In another sense, we avoid the problem of signal’s reconstruction stated previously
in the compression context.

Experimental results In our first experiment, we have considered a Correlation
Power Attack (CPA) performed on real unprotected DES traces. More precisely,
three analyses have been involved: CPA on the original traces (orig), CPA on
the first level of wavelet decomposition, i.e. the approximations and the details,
(AppDet) and a CPA on only the approximation coefficients (App). In order to
assess the efficiency of the attack, we computed the most commonly used metrics,
known respectively as the first-order success rate (SR) and the guessing entropy
(GE), which are basically proposed by F.X Standeart in [6]. The first-order success
rate, which is depicted in Fig. 6, shows that analysing the traces using wavelets
is clearly more efficient than the basic analysis in the time domain. Actually, the
SR is converging faster towards the maximal rate for AppDet and App than for
orig. For instance, to reach a SR of 90%, we need around 150 traces for orig,
and only 75 traces for AppDet (i.e. a gain of 50%). But more importantly, by
examining and comparing the performance of AppDet and App, we prove again
the importance of performing the analysis on only the approximation coefficients
for unprotected implementations. Nonetheless, during our experiments, we have re-
marked that AppDet often performs better then App when the implementation is
protected. Therefore, the evaluator is required to conduct his analysis on AppDet,
specifically when the deployed countermeasures are unknown. In Fig. 7, the guessing
entropy, unsurprisingly confirms the results found for the SR. In fact, the rank of
the secret key when performing a ordinary CPA takes more time to converge to the
lowest and best rank, compared to the analyses AppDet and App. Generally, from

Fig. 6. CPA first-order success rate.



Fig. 7. CPA guessing entropy.

the evaluation perspective, the evaluator has at his disposal powerful tools, usually
known as profiling analysis, such as the template analysis [7] and the stochastic
models [8], which mainly aims at revealing the finer details related to the leakage;
and therefore allowing the evaluator to reliably assess the robustness of the analysed
cryptographic implementation. In our second experimentation, we are interested in
Principal Components Analyses (PCA) based templates and examine the effect of
combination with Wavelet transforms on SCA specially when increasing the level of
wavelet decomposition. Indeed, in the open literature of wavelet analysis, the com-
bination between PCA and Wavelet Transforms has been recently proposed in [9];
and has turned out to be efficient in many engineering fields [10] [11]. The main
idea behind combining PCA with wavelets is to remove redundancy from wavelet
coefficients; and therefore keep only de-correlated ones. According to Fig. 8 and
Fig. 9, first we notice that the wavelet analysis outperforms, in terms of SR and
GE, the standard analysis, i.e. when performed on the original trace; and this for
all levels of decomposition. Moreover, the performance of the analysis is getting
better when the level is increased. In principle, the more scale levels are used, the
higher the performance is. Nonetheless, the energy can not be centralized endlessly.
Hence, there is always a limit scale level for the Wavelet transform. Beyond this
level, performance can not be increased. Besides, the increase in scale level means
more computations and time complexity. Therefore, a proper scale level should be
selected based on some points such as the amount of noise affecting the traces and
the frequency sampling used for the acquisition. When performing a template anal-
ysis, the selection of a proper level of decomposition can be easily achieved thanks
to the clone device used for the profiling.

3.4 Conclusion

In the perspective of reliably evaluate the robustness of secure devices against Side-
channel attacks, four aspects of analysis are basically taken into consideration: the
acquisition of Side-channel traces, the pre-processing of traces acquired, the detec-



Fig. 8. Template attack first-order success rate.

Fig. 9. Template attack guessing entropy.

tion and extraction of cryptographic patterns from the preprocessed traces, and
finally the recovery of sensitive information, referred to as the secret key. In this
paper, we provide the evaluator with novel applications of Wavelet transform in the
context of Side-channel analysis. Although Wavelet theory has been successfully
applied in many applications in science and engineering, it has been rarely invoked
in the SCA context. Actually, Wavelets have only been used in two occasions: first
they are used to remove noise from Side-channel traces (which is already known),
and second used to estimate the probability density function of the leaked infor-



mation. In this paper, we show how Wavelet transform can be useful to reduce the
storage capacity by compressing Side-channel traces. Besides, we highlight the way
in detecting and extracting the patterns of the analysed cryptographic process. Ad-
ditionally, we propose an improvement of signals denoising from the Side-channel
context. Besides, we show that wavelet analysis is not only used for pre-processing
purposes, but also in the very core of the attack. The overall goal of this paper
is about valuing, in a methodological manner, the use of Wavelet transform in the
SCA domain. Fig. 10 shows the involvement of the proposed applications in all SCA
aspects.

Wavelets Analysis

Acquisition Preprocessing Simple Analysis Advanced Analysis

SCA process flow diagram

noise cryptographic Attack improvementdata

− pdf estimation

− Wavelets attack

compression filtering pattern detection

Fig. 10. Involvement of wavelet analysis in SCA security aspects.
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